DRAFT

Grade 6 Mathematics
 Item Specifications

Standards Assessments

The draft Florida Standards Assessments (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as provided in CPALMs. The Specifications are a resource that defines the content and format of the test and test items for item writers and reviewers. Each grade-level and course Specifications document indicates the alignment of items with the Florida Standards. It also serves to provide all stakeholders with information about the scope and function of the FSA.

Item Specifications Definitions

Also assesses refers to standard(s) closely related to the primary standard statement.

Clarification statements explain what students are expected to do when responding to the question.

Assessment limits define the range of content knowledge and degree of difficulty that should be assessed in the assessment items for the standard.

Item types describe the characteristics of the question.
Context defines types of stimulus materials that can be used in the assessment items.

- Context - Allowable refers to items that may but are not required to have context.
- Context - No context refers to items that should not have context.
- Context - Required refers to items that must have context.

Item Descriptions:

The Florida Standards Assessments (FSA) are composed of test items that include traditional multiple-choice items and other item types that may be scanned and scored electronically.

Currently, there are six types of items that may appear on paper-based assessments for FSA Mathematics.

Any of the item types may be combined into a single item with multiple parts called a multiinteraction item. For paper-based assessments, the following selectable-response item types may be combined into a single item: multiple choice, multi-select, editing task choice, selectable hot text, and matching.

For samples of each of the item types described below, see the FSA Practice Tests.

Paper-Based Item Types - Mathematics

1. Multiple Choice - The student is directed to select the one correct response from among four options.
2. Multiselect - The student is directed to select all of the correct answers from among a number of options. These items are different from Multiple Choice items, which prompt the student to select only one correct answer.
3. Editing Task Choice - The student fills in a bubble to indicate the correct number, word, or phrase that should replace a blank.
4. Selectable Hot Text - Excerpted sentences from the text are presented in this item type. The student fills in bubbles to indicate which sentences are correct.
5. Equation Editor/Gridded-Response - The student fills in bubbles indicating numbers and mathematical symbols to create a response. Students respond in response grids in which they write their answer in the boxes at the top of the grid, then fill in the corresponding bubble underneath each box.
6. Matching Item - This item type presents options in columns and rows. The student is directed to fill in a bubble that matches a correct option from a column with a correct option from a row. Typically, there is only one correct option per row or column, though the number of correct answers may vary.

Mathematical Practices:

The Mathematical Practices are a part of each course description for Grades 3-8, Algebra 1, and Geometry. These practices are an important part of the curriculum. The Mathematical Practices will be assessed throughout.

	Make sense of problems and persevere in solving them.
MAFS.K12.MP.1.1:	Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.
MAFS.K12.MP.2.1:	Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

MAFS.K12.MP.3.1:	Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
MAFS.K12.MP.4.1:	Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, twoway tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered 7×5 $+7 \times 3$, in preparation for learning about the distributive property. In

MAFS.K12.MP.7.1:

MAFS.K12.MP.8.1: the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Reference Sheets:

- Reference sheets will be available as online references (in a pop-up window). A paper version will be available for paper-based tests.
- Reference sheets with conversions will be provided for FSA Mathematics assessments in Grades 4-8 and EOC Mathematics assessments.
- There is no reference sheet for Grade 3.
- For Grades 4, 6, 7, and Geometry, some formulas will be provided on the reference sheet.
- For Grade 5 and Algebra 1, some formulas may be included with the test item if needed to meet the intent of the standard being assessed.
- For Grade 8, no formulas will be provided; however, conversions will be available on a reference sheet.

Grade	Conversions	Some Formulas
3	No	No
4	On Reference Sheet	On Reference Sheet
5	On Reference Sheet	With Item
6	On Reference Sheet	On Reference Sheet
7	On Reference Sheet	On Reference Sheet
8	On Reference Sheet	No
Algebra 1	On Reference Sheet	With Item
Geometry	On Reference Sheet	On Reference Sheet

Content Standard	MAFS.6.RP Ratios \& Proportional Relationships MAFS.6.RP. 1 Understand ratio concepts and use ratio reasoning to solve problems. MAFS.6.RP.1.2 Understand the concept of a unit rate $\frac{a}{b}$ associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $\frac{3}{4}$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."
Assessment Limits	Items using the comparison of a ratio will use whole numbers. Rates can be expressed as fractions, with ":" or with words. Items may involve mixed units within each system (e.g. convert hours/min to seconds). Context itself does not determine the order. Name the amount of either quantity in terms of the other as long as one of the values is one unit.
Calculator	No
Context	Required
Sample Item	
Which statement describes a unit rate? A. Sara ate 1 cookie. B. Sara is driving 16 miles. C. Sara is driving 30 miles per 1 hour. D. Sara ate 3 crackers and 1 apple.	
See Appendix A for	e Practice Test item aligned to this standard.

Content Standard	MAFS.6.RP Ratios \& Proportional Relationships MAFS.6.RP. 1 Understand ratio concepts and use ratio reasoning MAFS.6.RP.1.3 Use ratio and rate reasoning to solve real-world problems, e.g., by reasoning about tables of equivalent ratios, t double number line diagrams, or equations. MAFS.6.RP.1.3a Make tables of equivalent ratios relating quant number measurements, find missing values in the tables, and plot values on the coordinate plane. Use tables to compare ratios. MAFS.6.RP.1.3b Solve unit rate problems including those involv constant speed. For example, if it took 7 hours to mow 4 lawns, how many lawns could be mowed in 35 hours? At what rate we mowed? MAFS.6.RP.1.3c Find a percent of a quantity as a rate per 100 (e.g quantity means $\frac{30}{100}$ times the quantity); solve problems involvin whole, given a part and the percent. MAFS.6.RP.1.3d Use ratio reasoning to convert measurement un and transform units appropriately when multiplying or dividing MAFS.6.RP.1.3e Understand the concept of Pi as the ratio of the a circle to its diameter.	to solve problems. nd mathematical pe diagrams, ies with wholethe pairs of g unit pricing and hen at that rate, lawns being ., 30% of a finding the ts; manipulate uantities. circumference of
Assessment Limits	Rates can be expressed as fractions, with ":" or with words. Items may involve mixed units within each system (e.g. convert seconds). Percent found as a rate per 100. Quadrant I only for MAFS.6.RP.1.3a.	urs/min to
Calculator	No	
Context	Allowable	
Sample Item		Item Type
Tom knows that in his school 10 out of every 85 students are left-handed. There are 391 students in Tom's school. How many students in Tom's school are left-handed?		Equation Editor
On the first day of shooting a movie, a director uses 30% of a film reel. The strip of film used was 90 meters long.		Equation Editor
See Appendix A for	e Practice Test item aligned to this standard.	

Content Standard	MAFS.6.NS The Number System MAFS.6.NS.1 Apply and extend previous understandings of multiplication and division to divide fractions by fractions. MAFS.6.NS.1.1 Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $\frac{2}{3} \div \frac{3}{4}$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $\frac{2}{3} \div \frac{3}{4}=\frac{8}{9}$ because $\frac{3}{4}$ of $\frac{8}{9}$ is $\frac{2}{3}$. (In general, $\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c}$.) How much chocolate will each person get if 3 people share $\frac{1}{2} \mathrm{lb}$ of chocolate equally? How many $\frac{3}{4}$-cup servings are in $\frac{2}{3}$ of a cup of yogurt? How wide is a rectangular strip of land with length $\frac{3}{4}$ mi. and area $\frac{1}{2}$ square mi.?	
Assessment Limits	At least the divisor or dividend needs to be a non-unit fraction. Dividing a unit fraction by a whole number or vice versa (e.g., $\frac{1}{a} \div q$ or $q \div \frac{1}{a}$, where a is a whole number) is below grade level.	
Calculator	No	
Context	Allowable	
Sample Item		Item Type
An expression is shown. $\frac{4}{5} \div \frac{8}{7}$ What is the value of the expression?		Equation Editor
An expression is shown. $2 \frac{1}{4} \div 1 \frac{2}{5}$ What is the value of the expression?		Equation Editor
A rectangular plot of land has an area of $\frac{3}{2}$ square kilometers and a length of $\frac{3}{4}$ kilometer. What is the width of the plot of land?		Equation Editor
See Appendix A for the Practice Test item aligned to this standard.		

Content Standard	MAFS.6.NS The Number System MAFS.6.NS.2 Compute fluently with multi-digit numbers and find common factors and multiples. MAFS.6.NS.2.2 Fluently divide multi-digit numbers using the standard algorithm.				
Assessment Limits	Items may only have 5-digit dividends divided by 2-digit divisors or 4-digit dividends divided by 2- or 3-digit divisors. Numbers in items are limited to non-decimal rational numbers.				
Calculator	No	Item Type			
Context	No context	Equation Editor			
Sample Item	An expression is shown. $2925 \div 15$ What is the value of the expression?				
See Appendix A for the Practice Test item aligned to this standard.					

Grade 6 Mathematics Item Specifications

Florida Standards Assessments

Content Standard	MAFS.6.NS The Number System MAFS.6.NS.2 Compute fluently with multi-digit numbers and find common factors and multiples. MAFS.6.NS.2.3 Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	
Assessment Limits	Items may include values to the thousandths place. Items may be set up in standard algorithm form.	
Calculator	No	
Context	Allowable	Item Type
Sample Item	An expression is shown.	
What is the value of the expression?		
See Appendix A for the Practice Test item aligned to this standard.		

Content Standard	MAFS.6.NS The Number System MAFS.6.NS.2 Compute fluently with multi-digit numbers and find common factors and multiples. MAFS.6.NS.2.4 Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers $1-100$ with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as $4(9+2)$.	
Assessment Limits	Whole numbers less than or equal to 100. Least common multiple of two whole numbers less than or equal to 12.	
Calculator	No	
Context	No context	Item Type
Sample Item	What is the greatest common factor of 15 and 20?	
What is the least common multiple of 7 and 12 ?	Equation Editor	
Which expression is equivalent to $8+20$?	Multiple Choice	
A. $4(4+20)$ B. $4(2+5)$ C. $2(2+10)$ D. $2(6+18)$	Equation Editor	
An equation is shown.		
$30+12=\square$ (5 + 2)		
What factor is missing from the equation?		
See Appendix A for the Practice Test item aligned to this standard.		

Content Standard	MAFS.6.NS The Number System MAFS.6.NS. 3 Apply and extend previous understandings of numbers to the system of rational numbers. MAFS.6.NS.3.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.	
Assessment Limits	Items should not require the student to perform an operation.	
Calculator	No	
Context	Required	
Sample Item		Item Type
Chicago, Illinois has an elevation of 600 feet above sea level. The elevation of Desert Shores, California is -200 feet. Select all the true statements. A. Desert Shores is above sea level. B. Desert Shores is at sea level. C. Desert Shores is below sea level. D. The difference in the elevations is less than 600 feet. E. The difference in the elevations is 600 feet. F. The difference in the elevations is more than 600 feet.		Multiselect
A. 600 feet B. 500 feet C. -200 feet D. 0 feet		Multiple Choice
See Appendix A for	e Practice Test item aligned to this standard.	

Content Standard	MAFS.6.NS The Number System MAFS.6.NS. 3 Apply and extend previous understandings of numbers to the system of rational numbers. MAFS.6.NS.3.6 Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. MAFS.6.NS.3.6a Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite. MAFS.6.NS.3.6b Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. MAFS.6.NS.3.6c Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane. Also Assesses: MAFS.6.NS.3.8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
Assessment Limits	Plotting of points in the coordinate plane should include some negative values (not just first quadrant). Numbers in MAFS.6.NS.3.8 must be positive or negative rational numbers. Do not use polygons/vertices for MAFS.6.NS.3.8. Do not exceed a 10×10 coordinate grid, though scales can vary.
Calculator	No
Context	Allowable
Sample Item	Item Type
What is the opposit	of -5 ? Equation Editor
What is the value of	the x-coordinate that is 9 units to the left of $(5,-8) ?$ Equation Editor
See Appendix A for the Practice Test items aligned to these standards.	

Content Standard	MAFS.6.NS Th MAFS.6.NS. 3 of rational num MAFS.6.NS.3. MAFS.6.NS.3. relative positio $-3>-7$ as a oriented from MAFS.6.NS.3. numbers in rea fact that $-3^{\circ} \mathrm{C}$ MAFS.6.NS.3. from 0 on the negative quan -30 dollars, w MAFS.6.NS.3. order. For exa represents a d	ber System nd extend p stand orde pret statem o numbers ent that ight. e, interpret d contexts. mer than - rstand the line; inter real-world $-30 \mid=30$ nguish com cognize th ater than 3	us understandin nd absolute val of inequality as number line diag cated to the rig explain statem ample, write ute value of a r bsolute value a ion. For examp cribe the size of ns of absolute account balanc ars.	ers to the system al numbers. about the xample, interpret a number line r for rational to express the ber as its distance for a positive or count balance of dollars. statements about -30 dollars	
Assessment Limit	N/A				
Calculator	No				
Context	Allowable				
Sample Item				Item Type	
Which value is furt A. 20 B. -21 C. \|20.5	 D. $\|-21.5\|$	est from 0 on th	ber line?		Multiple Choice
The elevations of s Select which city h	veral cities are	and which	s farthest from	Matching Item	
		Highest Elevation	Farthest from Sea Level		
Chicago, IL	600 feet	A.	B.		
Desert Shores, CA	-200 feet	C.	D.		
Orlando, FL	80 feet	E.	F.		

Content Standard	MAFS.6.EE Expressions \& Equations MAFS.6.EE. 1 Apply and extend previous understandings of arithmetic to algebraic expressions. MAFS.6.EE.1.1 Write and evaluate numerical expressions involving whole-number exponents.	
Assessment Limits	Whole number bases. Whole number exponents.	
Calculator	No	
Context	Allowable	
Sample Item		Item Type
Which value is equivalent to the expression 4^{5} ?		Multiple Choice
A. 9 B. 20 C. 625 D. 1024		
See Appendix A for the Practice Test item aligned to this standard.		

Content Standard	MAFS.6.EE Expressions \& Equations MAFS.6.EE. 1 Apply and extend previous understandings of arithmetic to algebraic expressions. MAFS.6.EE.1.3 Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	
Assessment Limits	Positive rational numbers, values may include exponents. Variables must be included in the expression. For items using distribution, coefficients may be fractions before distribution but must be integer values after simplification. Only positive rational numbers may be distributed.	
Calculator	No	
Context	Allowable	
Sample Item		Item Type
Alyssa attends football games at her school. At each football game, she buys a bottle of water for $\$ 0.75$ and a candy bar for x dollars. Select all expressions that represent the amount of money, in dollars, Alyssa spends after attending 6 football games. A. $6(0.75)(x)$ B. $6(0.75+x)$ C. $6(0.75)+6(x)$ D. $6+0.75+x$ E. $(6+0.75)(6+x)$		Multiselect
See Appendix A for	Practice Test item aligned to this standard.	

Content Standard	MAFS.6.EE Expressions \& Equations MAFS.6.EE. 1 Apply and extend previous understandings of arithmetic to algebraic expressions. MAFS.6.EE.1.4 Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.	
Assessment Limits	Numbers in items must be nonnegative rational numbers. Variables must be included in the expression.	
Calculator	No	
Context	No context	
Sample Item		Item Type
Which is an equivalent way to express $3 y$? A. y^{3} B. $3+y$ C. $y+y+y$ D. $y \cdot y \cdot y$		Multiple Choice
See Appendix A for	he Practice Test item ali	

Content Standard	MAFS.6.EE Expressions \& Equations MAFS.6.EE. 2 Reason about and solve one-variable equations and inequalities. MAFS.6.EE.2.5 Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	
Assessment Limits	Numbers in items must be nonnegative rational numbers. One-variable linear equations and inequalities. An equation or inequality should be given if a context is included. Inequalities are restricted to < or >. Lists of numbers should not use set notation.	
Calculator	No	
Context	Allowable	
Sample Item		Item Type
An equation is shown. $x+5=14$ Which of the values can be substituted for x to make the equation true? A. 7 B. 9 C. 14 D. 15		Multiple Choice
An equation is shown.		Equation Editor
$5 x+3 x=5 x+\frac{15}{2}$ What value of $3 x$ makes the equation true?		

Grade 6 Mathematics Item Specifications

Florida Standards Assessments

Sample Item	Item Type
An inequality is shown.	Multiselect
Select all the values of n that make the inequality true.	
A. $\frac{2}{5}$	
B. $\frac{1}{3}$	
C. $\frac{1}{3}$	
D. $\frac{2}{9}$	
E. $\frac{3}{2}$	

See Appendix A for the Practice Test item aligned to this standard.

Content Standard	MAFS.6.EE Expressions \& Equations MAFS.6.EE. 2 Reason about and solve one-variable equations and inequalities. MAFS.6.EE.2.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
Assessment Limits	Numbers in items should not require students to perform operations with negative rational numbers or result in answers with negative rational numbers. Expressions must contain at least one variable.
Calculator	No
Context	Allowable
See Appendix A for the Practice Test item aligned to this standard.	

Content Standard	MAFS.6.EE Expressions \& Equations MAFS.6.EE. 2 Reason about and solve one-variable equations and inequalities. MAFS.6.EE.2.7 Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q, and x are all non-negative rational numbers.	
Assessment Limits	Numbers in items should not require students to perform operations with negative rational numbers or result in answers with negative rational numbers. Items must be one-step linear equations with one variable.	
Calculator	No	
Context	Allowable	
Sample Item		Item Type
An equation is shown. $8 x=35$ What is the value for x that makes the equation true?		Equation Editor
Suzie buys a salad for $\$ 6.35$ on lunch. She bought a salad for $\$ 5.12$ and a drink for x dollars. Which equation can be used to solve for the price of the drink? A. $5.12 x=6.35$ B. $\frac{x}{6.35}=5.12$ C. $x+5.12=6.35$ D. $6.35+x=5.12$		Multiple Choice
See Appendix A for	e Practice Test item aligned to this standard.	

\(\left.$$
\begin{array}{|l|l|}\hline \text { Content Standard } & \begin{array}{l}\text { MAFS.6.EE Expressions \& Equations } \\
\text { MAFS.6.EE.2 Reason about and solve one-variable equations and inequalities. }\end{array}
$$

\hline MAFS.6.EE.2.8 Write an inequality of the form x>c or x<c to represent a

constraint or condition in a real-world or mathematical problem. Recognize that

inequalities of the form x>c or x<c have infinitely many solutions; represent

solutions of such inequalities on number line diagrams.\end{array}\right\}\)| Aumbers in items should not require students to perform operations with negative |
| :--- |
| rational numbers or result in answers with negative rational numbers. |
| Context in real-world items should be continuous or close to continuous. |
| Inequalities are limited to < or $>$. |

See Appendix A for the Practice Test item aligned to this standard.

Content Standard	MAFS.6.G Geometry MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume. MAFS.6.G.1.1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems.	
Assessment Limits	Numbers in items must be nonnegative rational numbers. Limit shapes to those that can be decomposed or composed into rectangles and/or right triangles.	
Calculator	No	
Context	Allowable	
Sample Item		Item Type
A shape is shown. $2 \mathrm{in} .$ \square not to scale What is the area, in	quare inches, of the shape?	Equation Edito
A pentagon, with not to scale What is the area, in	mensions in inches (in.), is shown. 1 in. quare inches, of the pentagon?	Equation Edito

| Content Standard | MAFS.6.G Geometry
 MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface
 area, and volume. |
| :--- | :--- | :--- | :--- | :--- |
| | MAFS.6.G.1.2 Find the volume of a right rectangular prism with fractional edge
 lengths by packing it with unit cubes of the appropriate unit fraction edge
 lengths, and show that the volume is the same as would be found by multiplying
 the edge lengths of the prism. Apply the formulas $V=l w h$ and $V=B h$ to find
 volumes of right rectangular prisms with fractional edge lengths in the context of
 solving real-world and mathematical problems. |
| Assessment Limits | Prisms in items must be right rectangular prisms.
 Unit fractional edge lengths for the unit cubes used for packing must have a
 numerator of 1. |
| Calculator | No |
| Context | Allowable |
| Sample Item | |

Content Standard	MAFS.6.G Geometry MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume
MAFS.6.G.1.3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.	
Assessment Limits	Items may use all four quadrants. When finding side length, limit polygons to traditional orientation (side lengths perpendicular to axes).
Calculator	No
Context	Allowable
See Appendix A for the Practice Test item aligned to this standard.	

| Content Standard | MAFS.6.G Geometry
 MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface
 area, and volume
 MAFS.6.G.1.4 Represent three-dimensional figures using nets made up of
 rectangles and triangles, and use the nets to find the surface area of these figures.
 Apply these techniques in the context of solving real-world and mathematical
 problems. | |
| :--- | :--- | :--- | :--- |
| Calculator | Numbers in items must be positive rational numbers.
 Three-dimensional figures are limited to rectangular prisms, triangular prisms,
 rectangular pyramids, and triangular pyramids. | |
| Context | Allowable | |
| Sample Item | | |
| A net is shown. | | |

Sample Item

The surface area of a rectangular prism is 115 square inches. The net of the prism is shown.

not to scale
What are possible dimensions of the prism?
A. $2,4,6 \frac{1}{2}$
B. $2,4,8 \frac{1}{4}$
C. $3,6,6 \frac{1}{2}$
D. $3,6,8 \frac{1}{4}$

See Appendix A for the Practice Test item aligned to this standard.

Content Standard	MAFS.6.SP Statistics \& Probability MAFS.6.SP.1 Develop understanding of statistical variability. MAFS.6.SP.1.1 Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	
Assessment Limits	N/A	
Calculator	No	
Context	Required	Item Type
Sample Item	Select all of the statistical questions.	Multiselect
A. How many days are in the year?		
B. How many people live in the county with the largest population in Florida?		
C. What is the typical length of study time for the students at Grove Middle School?		
D. What is the average temperature in January?		
E. When does Matchell Bank open in the morning?		
See Appendix A for the Practice Test item aligned to this standard.		

Grade 6 Mathematics Item Specifications

Florida Standards Assessments

Content Standard	MAFS.6.SP Statistics \& Probability MAFS.6.SP. 1 Develop understanding of statistical variability. MAFS.6.SP.1.2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	
Assessment Limits	Circle graphs and line graphs may not be used. Items should include a distribution.	
Calculator	No	
Context	Allowable	
Sample Item		Item Type
A dot plot is shown If the quantities 3 a affected? A. slightly skew B. slightly skew C. more symm D. more symm	Dot Plot d 4 are added to the data set, how would the distribution be ed with median greater than mean ed with equal median and mean trical with median less than mean trical with equal median and mean	Multiple Choice

Content Standard	MAFS.6.SP Statistics \& Probability MAFS.6.SP. 1 Develop understanding of statistical variability. MAFS.6.SP.1.3 Recognize that a measure of center for a nume summarizes all of its values with a single number, while a mea describes how its values vary with a single number.	data set of variation
Assessment Limits	Data sets in items must be numerical data sets.	
Calculator	No	
Context	Allowable	
Sample Item		Item Type
While driving the rode on his bus. week for 5 weeks,	and Avenue bus route, Tim kept a record of how many people recorded the total number of people who rode the bus each shown in the table.	Multiple Choice
Week ${ }^{\text {N }}$ Num	er of People	
1	16,325	
2	18,140	
3	17,362	
4	16,697	
5	16,786	
What statistical measure would represent the average number of people who rode the bus?		
A. mean absolute deviation		
B. interquartile range		
C. median		
D. mean		

See Appendix A for the Practice Test item aligned to this standard.

Content Standard	MAFS.6.SP Statistics \& Probability MAFS.6.SP. 2 Summarize and describe distributions. MAFS.6.SP.2.5 Summarize numerical data sets in relation to their by: MAFS.6.SP.2.5a Reporting the number of observations. MAFS.6.SP.2.5b Describing the nature of the attribute under inve including how it was measured and its units of measurement. MAFS.6.SP.2.5c Giving quantitative measures of center (median variability (interquartile range and/or mean absolute deviation), describing any overall pattern and any striking deviations from the with reference to the context in which the data were gathered. MAFS.6.SP.2.5d Relating the choice of measures of center and va shape of the data distribution and the context in which the data	context, such as stigation, nd/or mean) and s well as overall pattern riability to the ere gathered.
Assessment Limits	Displays should include only dot/line plots, box plots, or histograms.	
Calculator	No	
Context	Required	
Sample Item		Item Type
Tim drives the Grand Avenue bus route. The total number of people who ride the bus each week for 5 weeks is shown in the data table.		Equation Editor
Week ${ }^{\text {N }}$ Num	er of People	
1	16,325	
2	18,140	
3	17,362	
4	16,697	
5	16,786	
What is the range of the number of people who ride the bus each week?		
Alex found the mean number of food cans that were donated by students for the canned food drive at Epping Middle School. Alex's work is shown.$\frac{1+2+5+3+6+1+4+4+2+1+2+3+7+2+4+1}{1}=3$		Equation Editor
How many students donated food cans?		

Grade 6 Mathematics Item Specifications

Florida Standards Assessments

Sample Item	
Tim drives the Grand Avenue bus ro each week for 5 weeks is shown in th	
Week Number of People 1 17,012 2 18,140 3 17,362 4 16,697 5 14,387	

What is the interquartile range of the data?

A dot plot shows the number of cans students at Epping Middle School collected for

Number of Cans Donated by Students

Which pair of statistical measures would best represent the data set shown in the dot plot?
A. median and interquartile range
B. mean and interquartile range
C. median and mean absolute deviation
D. mean and mean absolute deviation

See Appendix A for the Practice Test item aligned to this standard.

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Appendix A

The chart below contains information about the standard alignment for the items in the Grade 6 Mathematics FSA Paper-Based Practice Test at http://fsassessments.org/students-and-families/practicetests/.

Content Standards	Item Types	Paper-Based Practice Test Item Number
MAFS.6.RP.1.1	Editing Task Choice	7
MAFS.6.RP.1.2	Equation Editor	4
MAFS.6.RP.1.3e	Multiple Choice	21
MAFS.6.NS.1.1	Multiple Choice	5
MAFS.6.NS.2.2	Equation Editor	6
MAFS.6.NS.2.3	Equation Editor	19
MAFS.6.NS.2.4	Matching Item	15
MAFS.6.NS.3.5	Multiselect	26
MAFS.6.NS.3.6	Multiple Choice	9
MAFS.6.NS.3.7	Multiselect	3
MAFS.6.NS.3.8	Equation Editor	29
MAFS.6.EE.1.1	Equation Editor	13
MAFS.6.EE.1.2	Multiselect	17
MAFS.6.EE.1.3	Multiselect	18
MAFS.6.EE.1.4	Multiple Choice	1
MAFS.6.EE.2.5	Matching Item	2
MAFS.6.EE.2.6	Multiple Choice	20
MAFS.6.EE.2.7	Multi-Interaction: Multiple Choice and Editing Task Choice	10
MAFS.6.EE.2.8	Multi-Interaction: Multiple Choice and Multiple Choice	22
MAFS.6.EE.3.9	Selectable Hot Text	12
MAFS.6.G.1.1	Equation Editor	24
MAFS.6.G.1.2	Equation Editor	27
MAFS.6.G.1.3	Equation Editor	14
MAFS.6.G.1.4	Equation Editor	11
MAFS.6.SP.1.1	Multiple Choice	8
MAFS.6.SP.1.3	Equation Editor	25
MAFS.6.SP.1.3	Multiselect	28
MAFS.6.SP.2.4	Multiple Choice	16
MAFS.6.SP.2.5	Equation Editor	23

Appendix B: Revisions

Page(s)	Revision	Date
3	Revisions for paper-based testing (PBT) grades.	January 2020
11	Sample item revised.	January 2020
19	Sample item deleted.	January 2020
21	Sample item revised.	January 2020
26	Sample item revised.	January 2020
28	Sample item revised.	January 2020
30	Sample item revised.	January 2020
35	Sample item revised.	January 2020
37	Sample item revised.	January 2020
40	Appendix A updated to show January 2020 Practice Test information.	January 2020

Grade 6 FSA Mathematics Reference Sheet

Customary Conversions

1 foot = 12 inches
1 yard $=3$ feet
1 mile $=5,280$ feet
1 mile $=1,760$ yards
1 cup $=8$ fluid ounces
1 pint $=2$ cups
1 quart = 2 pints
1 gallon = 4 quarts
1 pound = 16 ounces
1 ton = 2,000 pounds

Metric Conversions

1 meter = 100 centimeters
1 meter $=1000$ millimeters
1 kilometer $=1000$ meters

1 liter = 1000 milliliters
1 gram = 1000 milligrams
1 kilogram = 1000 grams

Time Conversions

1 minute $=60$ seconds
1 hour $=60$ minutes
1 day $=24$ hours
1 year $=365$ days
1 year = 52 weeks

Formulas

$A=b h$

$$
A=\frac{1}{2} h\left(b_{1}+b_{2}\right)
$$

$A=1 w$

$$
V=B h
$$

$A=\frac{1}{2} b h$
$V=I w h$

