DRAFT

Grade 7 Mathematics
 Item Specifications

The draft Florida Standards Assessments (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as provided in CPALMs. The Specifications are a resource that defines the content and format of the test and test items for item writers and reviewers. Each grade-level and course Specifications document indicates the alignment of items with the Florida Standards. It also serves to provide all stakeholders with information about the scope and function of the FSA.

Item Specifications Definitions
Also assesses refers to standard(s) closely related to the primary standard statement.

Clarification statements explain what students are expected to do when responding to the question.

Assessment limits define the range of content knowledge and degree of difficulty that should be assessed in the assessment items for the standard.

Item types describe the characteristics of the question.

Context defines types of stimulus materials that can be used in the assessment items.

- Context - Allowable refers to items that may but are not required to have context.
- Context - No context refers to items that should not have context.
- Context - Required refers to items that must have context.

Technology-Enhanced Item Descriptions:

The Florida Standards Assessments (FSA) are composed of test items that include traditional multiple-choice items, items that require the student to type or write a response, and technology-enhanced items (TEI). Technology-enhanced items are computer-delivered items that require the student to interact with test content to select, construct, and/or support their answers.

Currently, there are nine types of TEls that may appear on computer-based assessments for FSA Mathematics. For students with an IEP or 504 plan that specifies a paper-based accommodation, TEls will be modified or replaced with test items that can be scanned and scored electronically.

Any of the item types may be combined into a single item with multiple parts called a multiinteraction item. The student will interact with different item types within a single item. Each part could be a different item type. For paper-based assessments, the following selectableresponse item types may be combined into a single item: multiple choice, multi-select, editing task choice, selectable hot text, and matching.

For samples of each of the item types described below, see the FSA Practice Tests.

Technology-Enhanced Item Types - Mathematics

1. Editing Task Choice - The student clicks a highlighted word, phrase, or blank, which reveals a drop-down menu containing options for correcting an error as well as the highlighted word or phrase as it is shown in the sentence to indicate that no correction is needed. The student then selects the correct word or phrase from the drop-down menu. For paperbased assessments, the item is modified so that it can be scanned and scored electronically. The student fills in a bubble to indicate the correct word or phrase.
2. Editing Task - The student clicks on a highlighted word or phrase that may be incorrect, which reveals a text box. The directions in the text box direct the student to replace the highlighted word or phrase with the correct word or phrase. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
3. Hot Text-
a. Selectable Hot Text - Excerpted sentences from the text are presented in this item type. When the student hovers over certain words, phrases, or sentences, the options highlight. This indicates that the text is selectable ("hot"). The student can then click on an option to select it. For paper-based assessments, a "selectable" hot text item is
modified so that it can be scanned and scored electronically. In this version, the student fills in a bubble to indicate a selection.
b. Drag-and-Drop Hot Text - Certain numbers, words, phrases, or sentences may be designated "draggable" in this item type. When the student hovers over these areas, the text highlights. The student can then click on the option, hold down the mouse button, and drag it to a graphic or other format. For paper-based assessments, drag-and-drop hot text items will be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
4. Open Response - The student uses the keyboard to enter a response into a text field. These items can usually be answered in a sentence or two. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
5. Multiselect - The student is directed to select all of the correct answers from among a number of options. These items are different from Multiple Choice items, which allow the student to select only one correct answer. These items appear in the online and paperbased assessments.
6. Graphic Response Item Display (GRID) - The student selects numbers, words, phrases, or images and uses the drag-and-drop feature to place them into a graphic. This item type may also require the student to use the point, line, or arrow tools to create a response on a graph. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
7. Equation Editor - The student is presented with a toolbar that includes a variety of mathematical symbols that can be used to create a response. Responses may be in the form of a number, variable, expression, or equation, as appropriate to the test item. For paperbased assessments, this item type may be replaced with a modified version of the item that can be scanned and scored electronically or replaced with another item type that assesses the same standard and can be scanned and scored electronically.
8. Matching Item - The student checks a box to indicate if information from a column header matches information from a row. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
9. Table Item - The student types numeric values into a given table. The student may complete the entire table or portions of the table depending on what is being asked. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.

Mathematical Practices:

The Mathematical Practices are a part of each course description for Grades 3-8, Algebra 1, and Geometry. These practices are an important part of the curriculum. The Mathematical Practices will be assessed throughout.

	Make sense of problems and persevere in solving them.
MAFS.K12.MP.1.1:	Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.
MAFS.K12.MP.2.1:	Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

MAFS.K12.MP.3.1:	Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
MAFS.K12.MP.4.1:	Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, twoway tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are
MAFS.K12.MP.6.1: careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

MAFS.K12.MP.7.1:	Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered 7×5 $+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.
MAFS.K12.MP.8.1:	Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Reference Sheets:

- Reference sheets will be available as online references (in a pop-up window). A paper version will be available for paper-based tests.
- Reference sheets with conversions will be provided for FSA Mathematics assessments in Grades 4-8 and EOC Mathematics assessments.
- There is no reference sheet for Grade 3.
- For Grades 4, 6, 7, and Geometry, some formulas will be provided on the reference sheet.
- For Grade 5 and Algebra 1, some formulas may be included with the test item if needed to meet the intent of the standard being assessed.
- For Grade 8, no formulas will be provided; however, conversions will be available on a reference sheet.

Grade	Conversions	Some Formulas
3	No	No
4	On Reference Sheet	On Reference Sheet
5	On Reference Sheet	With Item
6	On Reference Sheet	On Reference Sheet
7	On Reference Sheet	On Reference Sheet
8	On Reference Sheet	No
Algebra 1	On Reference Sheet	With Item
Geometry	On Reference Sheet	On Reference Sheet

Grade 7 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.7.RP Ratios \& Proportional Relationships MAFS.7.RP. 1 Analyze proportional relationships and use them to solve real-world and mathematical problems. MAFS.7.RP.1.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $\frac{1}{2}$ mile in each $\frac{1}{4}$ hour, compute the unit rate as the complex fraction $\frac{\frac{1}{2}}{\frac{1}{4}}$ miles per hour, equivalently 2 miles per hour.	
Assessment Limits	The item stem must include at least one fraction. Ratios may be expressed as fractions, with ":" or with words. Units may be the same or different across the two quantities.	
Calculator	Yes	
Context	Allowable	
Sample Item		Item Type
A recipe used $\frac{2}{3}$ cup of sugar for every 2 teaspoons of vanilla. How much sugar was used per teaspoon of vanilla? A. $\frac{1}{3}$ B. $1 \frac{1}{3}$ C. $2 \frac{2}{3}$ D. 3		Multiple Choice
A recipe calls for $\frac{2}{3}$ cup of sugar for every 4 teaspoons of vanilla. How much vanilla should be used for every 1 cup of sugar? A. $\frac{1}{6}$ B. $2 \frac{2}{3}$ C. $4 \frac{2}{3}$ D. 6		Multiple Choice
A recipe calls for $\frac{2}{3}$ rate in cups per tea	up of sugar for every 2 teaspoons of vanilla. What is the unit oon?	Equation Editor
A recipe calls for $\frac{2}{3}$ rate in teaspoons	cup of sugar for every 4 teaspoons of vanilla. What is the unit r cup?	Equation Editor
See Appendix A for the Practice Test item aligned to this standard.		

Grade 7 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.7.RP Ratios \& Proportional Relationships MAFS.7.RP. 1 Analyze proportional relationships and use the and mathematical problems. MAFS.7.RP.1.2 Recognize and represent proportional relatio quantities. MAFS.7.RP.1.2a Decide whether two quantities are in a pro e.g., by testing for equivalent ratios in a table or graphing on and observing whether the graph is a straight line through t MAFS.7.RP.1.2b Identify the constant of proportionality (unit graphs, equations, diagrams, and verbal descriptions of prop MAFS.7.RP.1.2c Represent proportional relationships by eq total cost t is proportional to the number n of items purchas p, the relationship between the total cost and the number of expressed as $t=p n$. MAFS.7.RP.1.2d Explain what a point (x, y) on the graph of relationship means in terms of the situation, with special at $(0,0)$ and $(1, r)$ where r is the unit rate.	olve real-world between nal relationship, rdinate plane in. in tables, al relationships. . For example, if constant price can be ortional to the points
Assessment Limits	Ratios should be expressed as fractions, with ":" or with words. Units may be the same or different across the two quantities.	
Calculator	Neutral	
Context	Allowable	
Sample Item		Item Type
Ethan ran 11 miles hour? A. 5.5 miles per hour B. $0 . \overline{18}$ miles per C. 5.5 hours per m D. $0 . \overline{18}$ hours per	2 hours. What is the constant of proportionality of miles to ur our le mile	Multiple Choice

Sample Item	Item Type
Kara is mixing paint. Each batch has twice as much blue paint as yellow paint. Plot points to represent the amount of blue and yellow paint used in three differentsized batches. Kara's Paint	GRID
The points on the coordinate plane show the amount of red and yellow paint in each batch. Paint Batches Write an equation to represent the relationship between red paint, r, and yellow paint, y, in each batch.	Equation Editor
The graph below represents the rate for the cost of b books. Cost per Book Write an equation to represent the cost, c.	Equation Editor

Content Standard	MAFS.7.RP Ratios \& Proportional Relationships MAFS.7.RP. 1 Analyze proportional relationships and use them to solve real-world and mathematical problems. MAFS.7.RP.1.3 Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	
Assessment Limits	Units may be the same or different across the two quantities.	
Calculator	Yes	
Context	Allowable	
Sample Item		Item Type
Nicole has $\$ 25$ to spend on dinner for herself. Tax on her meal is 5.5%, and she wants to tip 20% on the amount of her meal only. Select all the amounts Nicole could spend on her meal. ㅁ $\$ 13.00$ ㅁ \$14.79 ㅁ $\$ 15.85$ ㅁ \$18.60 ㅁ \$20.25 ㅁ $\$ 21.50$		Multiselect
James pays $\$ 120.00$ for golf clubs that are on sale for 20% off at Golf Pros. At Nine Iron, the same clubs cost $\$ 8.00$ less than they cost at Golf Pros. They are on sale for 13% off. What is the original cost of the clubs at Nine Iron?		Equation Editor
See Appendix A for	e Practice Test item aligned to this standard.	

Content Standard	MAFS.7.NS The Number System MAFS.7.NS. 1 Apply and extend previous understandings of oper to add, subtract, multiply, and divide rational numbers. MAFS.7.NS.1.1 Apply and extend previous understandings of ad subtraction to add and subtract rational numbers; represent ad on a horizontal or vertical number line diagram. MAFS.7.NS.1.1a Describe situations in which opposite quantitie For example, a hydrogen atom has 0 charge because its two con oppositely charged. MAFS.7.NS.1.1b Understand $p+q$ as the number located a dist the positive or negative direction depending on whether q is po Show that a number and its opposite have a sum of 0 (are addit Interpret sums of rational numbers by describing real-world con MAFS.7.NS.1.1c Understand subtraction of rational numbers as inverse, $p-q=p+(-q)$. Show that the distance between two the number line is the absolute value of their difference, and ap real-world contexts. MAFS.7.NS.1.1d Apply properties of operations as strategies to rational numbers.	ns with fractions ion and on and subtraction ombine to make 0. uents are e $\|q\|$ from p, in ve or negative. inverses). ts. ding the additive tional numbers on this principle in and subtract
Assessment Limit	N/A	
Calculator	Neutral	
Context	Allowable	
Sample Item		Item Type
A number line is shown. Use the Add Point tool to plot a point that is 14.5 units from 8 on the given number line.		GRID
An expression is sh $-5 \frac{1}{2}+7 \frac{3}{4}$ What is the value	the expression?	Equation Editor

Sample Item	Item Type
A number line is shown. Jack knows that $a+b=0$. Which statement is true? A. $a=b$ B. $-b=a$ C. $a-b=0$ D. $b-a=0$	Multiple Choice
An expression is shown. $1+2+(-5)+4$ Kendrick is using number lines to find the value of the expression. His first two steps are shown. A. Use the Add Arrow tool to show the last two steps. B. Select the value of the expression. A. $1+2+(-5)+4$ Start at 1. Then add 2. Then add (-5). Then add 4. B. What is the value of the expression? $\begin{array}{llllll}-6 & -5 & 0 & 2 & 4 & 12\end{array}$	GRID
An expression is shown. $15.5+(-16.75)$ What is the value of the expression?	Equation Editor

Sample Item	Item Type
Megan and Jake both live on the same street that the library is on. Jake (J): 4.5 km from the library (L) Megan (M): 5.5 km from the library (L) How many kilometers (km) apart do Megan and Jake live?	Equation Editor
The sum of a and b is c. The number line shows a and b. Which statements about c are true? $\|a\|<\|c\|$ $\|a\|=\|c\|$ $\|a\|>\|c\|$ $c<0$ $c=0$ $c>0$	Multiselect
See Appendix A for the Practice Test item aligned to this standard.	

Content Standard	MAFS.7.NS The Number System MAFS.7.NS. 1 Apply and extend previous understanding of operatio MAFS.7.NS.1.2 Apply and extend previous understandings of mu division and of fractions to multiply and divide rational numbers MAFS.7.NS.1.2a Understand that multiplication is extended from numbers by requiring that operations continue to satisfy the pro particularly the distributive property, leading to products such as the rules for multiplying signed numbers. Interpret products of r describing real-world contexts. MAFS.7.NS.1.2b Understand that integers can be divided, provid not zero, and every quotient of integers (with non-zero divisor) is If p and q are integers, then $-\frac{p}{q}=\frac{p}{-q}$. Interpret quotients of rat describing real-world contexts. MAFS.7.NS.1.2c Apply properties of operations as strategies to mu rational numbers. MAFS.7.NS.1.2d Convert a rational number to a decimal using lo that the decimal form of a rational number terminates in Os or e	ns with fractions. plication and ractions to rational rties of operations, $-1)(-1)=1$ and onal numbers by that the divisor is rational number. nal numbers by Itiply and divide division; know ntually repeats.
Assessment Limits	7.NS.1.2a, $2 b$, and $2 c$ require the incorporation of a negative va	
Calculator	No	
Context	Allowable	
Sample Item		Item Type
Springfield has an as Springfield. What is Greenville'	vation of -150 feet. Greenville is 3 times as far below sea level elevation, in feet?	Equation Editor
An equation is show $x \cdot y=z$ Which statements $y<0$ $y>0$ $\|y\|<1$ $\|y\|=1$ $\|y\|>1$, where $x>0, z<0$, and $\|x\|>\|z\|$. e true?	Multiselect

Sample Item	Item Type
An equation is shown, where $z<0$. $x \cdot y=z$ A. Assume $x>0$. Drag the point to the number line to identify a possible location for y. B. Assume $x<0$. Drag the point to the number line to identify a possible location for y.	GRID

See Appendix A for the Practice Test item aligned to this standard.

Grade 7 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.7.EE Expressions \& Equations MAFS.7.EE.1 Use properties of operations to generate equivalent expressions. MAFS.7.EE.1.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	
Assessment Limits	Expressions must be linear and contain a variable.	
Calculator	Neutral	
Context	Allowable	Item Type
Sample Item	Equation Editor	
What is the sum of the two expressions?		
$\left(\frac{2}{5} x+3\right)+\left(\frac{1}{5} x-1\right)$	Equation Editor	
Find the difference of the two expressions.		
$\left(\frac{2}{5} x+5\right)-\left(\frac{1}{5} x-3\right)$		
See Appendix A for the Practice Test item aligned to this standard.		

Content Standard	MAFS.7.EE Expressions \& Equations MAFS.7.EE. 1 Use properties of operations to generate equivalent expressions. MAFS.7.EE.1.2 Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05."	
Assessment Limits	Expressions must be linear.	
Calculator	Neutral	
Context	Allowable	
Sample Item		Item Type
Maggie is buying a jacket. The expression shown represents the sales tax on the jacket price, j. $0.08 j$ Write an expression in terms of j to represent the total amount that Maggie spends on the jacket, including tax.		Equation Editor
The expression shown represents the total amount that Jen spent on buying two of the same sweaters during a sale. $1.75 x$ Which equivalent expression reveals the discount Jen received on one for buying two? A. $2 x-0.25 x$ B. $0.25 x-2 x$ C. $2(x-0.25 x)$ D. $2 x-(2 x-0.25 x)$		Multiple Choice
See Appendix A for	he Practice Test item aligned to this standard.	

Grade 7 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.7.EE Expressions \& Equations MAFS.7.EE. 2 Solve real-life and mathematical problems using numerical and algebraic expressions and equations. MAFS.7.EE.2.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $\frac{1}{10}$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar $9 \frac{3}{4}$ inches long in the center of a door that is $27 \frac{1}{2}$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.	
Assessment Limits	Items should not use variables. Items should require two or more steps.	
Calculator	Yes	
Context	Required	
Sample Item		Item Type
Rolando is 13 . In five years, his age will be $\frac{3}{2}$ the age of his sister Marisa. How old will Marisa be in three years?		Equation Editor
A set of pencils sells for $\$ 1.75$ and costs $\$ 0.40$ to make. Twenty percent of the profit (the difference between the purchase price and the amount it costs to make) from each set of pencils goes to a school. If 500 sets are sold, what is the amount of money that will go to the school?		Equation Editor
A bucket holds 243.5 ounces (oz) of water when full. The bucket loses 0.3 oz of water per second. In how many seconds will the bucket be 40% full?		Equation Editor
A plane is flying at 31,348 feet. It needs to rise to 36,000 feet in two stages. In stage 1, it rises 5\% of its initial altitude of 31,348 feet. In stage 2 , it rises at a rate of 140.3 feet per minute. How many minutes does it take for the plane to rise during stage 2 ?		Equation Editor
See Appendix A for	Practice Test item aligned to this standard.	

Content Standard	MAFS.7.EE Expressions \& Equations MAFS.7.EE. 2 Solve real-life and mathematical problems using nu expressions and equations. MAFS.7.EE.2.4 Use variables to represent quantities in a real-wo problem, and construct simple equations and inequalities to solv reasoning about the quantities. MAFS.7.EE.2.4a Solve word problems leading to equations of the and $p(x+q)=r$, where p, q, and r are specific rational numbers. of these forms fluently. Compare an algebraic solution to an arith identifying the sequence of the operations used in each approach. perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its w MAFS.7.EE.2.4b Solve word problems leading to inequalities of the or $p x+q<r$, where p, q, and r are specific rational numbers. set of the inequality and interpret it in the context of the problem. salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week to be at least $\$ 100$. Write an inequality for the number of sales y describe the solutions.	erical and algebraic d or mathematical problems by orm $p x+q=r$ Solve equations metic solution, For example, the th? form $p x+q>r$ aph the solution For example: As a you want your pay need to make, and
Assessment Limits	Inequalities must have context. Inequalities may use \leq or \geq. Inequalities may not be compound inequalities.	
Calculator	Yes	
Context	Allowable	
Sample Item		Item Type
The perimeter of a is 15 ft . What is the width,	ectangular garden is 37.5 feet (ft). The width is x, and the length feet, of the garden?	Equation Editor
A community is planning to build a rectangular garden. The width of the garden is $\frac{27}{4}$ feet (ft), and the perimeter of the garden is 37.5 ft . The community planners want to spread mulch on the entire garden. How many square feet of mulch will be needed?		Equation Editor
See Appendix A for the Practice Test item aligned to this standard.		

Sample Item	Item Type
Lisa drew a picture of a boat. She used the scale shown. 6 feet	Equation Editor
The boat in her picture is 7 inches long.	
What is the length, in feet, of the actual boat?	Equation Editor
1 inch : 6.5 feet	
The boat in her picture is 7.25 inches long.	
What is the length, in feet, of the actual boat?	
See Appendix A for the Practice Test item aligned to this standard.	

Content Standard	MAFS.7.G Geometry MAFS.7.G.1 Draw, construct, and describe geometrical figures and describe the relationships between them. MAFS.7.G.1.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	
Assessment Limits	Given conditions should not focus on similarity or congruence or that the sum of angles in a triangle is 180 degrees. Be aware of the scoring capabilities for the GRID tool when designing these items. To distinguish from other grades, conditions should include factors other than parallel/perpendicular lines and angle measure, such as symmetry and side length.	
Calculator	Neutral	
Context	Allowable	
Sample Item		Item Type
Use the Connect Line tool to draw a figure that has at least one pair of parallel sides and two side lengths of 5 units and 7 units.		GRID
Nathan wants to dr and 7 inches. What is a possible	w a triangle. He knows that two of the side lengths are 5 inches ngth for the third side?	Equation Editor
See Appendix A for	he Practice Test item aligned to this standard.	

Content Standard	MAFS.7.G Geometry MAFS.7.G. 1 Draw, construct, and describe geometrical figures and describe the relationships between them. MAFS.7.G.1.3 Describe the two-dimensional figures that result from slicing threedimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	
Assessment Limits	Spheres, cones, and cylinders are allowed. Slicing is limited to horizontal or vertical slices. Bases of prisms and pyramids can be a triangle (any type); a square; a rectangle; or a regular pentagon or hexagon. Items should not use composite figures.	
Calculator	Neutral	
Context	Allowable	
Sample Item		Item Type
A pyramid is sliced horizontally as shown. Use the Connect Line tool to draw a shape that represents the two-dimensional cross section of the pyramid.		GRID
A prism is sliced vertically as shown. Use the Connect Line tool to draw a shape that represents the cross section of the prism.		GRID
See Appendix A for	he Practice Test item aligned to this standard.	

Grade 7 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.7.G Geometry MAFS.7.G. 2 Solve real-life and mathematical problems involving angle measure, area, surface area, and volume. MAFS.7.G.2.4 Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	
Assessment Limit	Circles are limited to whole circles and semicircles.	
Calculator	Yes	
Context	Allowable	
Sample Item		Item Type
A circle with its dimensions, in centimeters (cm), is shown. What is the area, in square centimeters, of the circle?		Equation Editor
A circle with its dim What is the area,	nsions, in inches (in.), is shown. square inches, of half the circle?	Equation Editor
Mark placed a poo The radius of the pool?	in his backyard, which is enclosed by a triangular fence. et is 20.5 feet. How much of the backyard area is not covered by the	Equation Editor
See Appendix A for the Practice Test item aligned to this standard.		

Content Standard	MAFS.7.G Geometry MAFS.7.G.2 Solve real-life and mathematical problems involving angle measure, area, surface area, and volume. MAFS.7.G.2.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	
Assessment Limits	Items should use angles measured in degrees only.	
Calculator	Yes	
Context	Allowable	
Sample Item		Item Type
A figure is shown. What is the measu	B , in degrees, of $\angle A C B$?	Equation Editor
See Appendix A for	Pe Practice Test item alig	

Content Standard	MAFS.7.G Geometry MAFS.7.G. 2 Solve real-life and mathematical problems involving angle measure, area, surface area, and volume. MAFS.7.G.2.6 Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	
Assessment Limits	Three-dimensional shapes may include right prisms and right pyramids. When the base of a figure has more than four sides, the area of the base must be given.	
Calculator	Yes	
Context	Allowable	
Sample Item		Item Type
The surface area of a cube is 6 square centimeters. What is its volume, in cubic centimeters?		Equation Editor
A cube with a surface area of 96 square centimeters is shown. Eight cubes like the one shown are combined to create a larger cube. What is the volume, in cubic centimeters, of the new cube?		Equation Editor
See Appendix A fo	he Practice Test item aligned to this standard.	

Content Standard	MAFS.7.SP Statistics \& Probability MAFS.7.SP. 1 Use random sampling to draw inferences about a pop MAFS.7.SP.1.2 Use data from a random sample to draw inferences population with an unknown characteristic of interest. Generate m simulated samples) of the same size to gauge the variation in estim predictions. For example, estimate the mean word length in a book sampling words from the book; predict the winner of a school elect randomly sampled survey data. Gauge how far off the estimate or be. Also Assesses: MAFS.7.SP.1.1 Understand that statistics can be used to gain infor population by examining a sample of the population; generalizatio population from a sample are valid only if the sample is representa population. Understand that random sampling tends to produce re samples and support valid inferences.	ation. bout a tiple samples (or es or y randomly based on diction might ation about a about a ve of that esentative
Assessment Limits	Context must be grade appropriate.	
Calculator	Neutral	
Context	Required	
Sample Item		Item Type
A chocolate company selects 50 random packages and checks their weight. It finds that 2 packages have an incorrect weight. How many packages out of 2000 should the company predict have an incorrect weight?		Equation Editor
A chocolate compa selects 25 random package of type A weight. How many package checks 2000 of eac	y produces 2 types of chocolate: type A and type B. The company packages of each type to check their weight and finds that one s an incorrect weight and 3 packages of type B have an incorrect should the company predict have an incorrect weight when it type?	Equation Editor

Grade 7 Mathematics Item Specifications

Florida Standards Assessments

Sample Item	Item Type
A middle school has	Multiple Choice
• 220 students in grade 6;	
- 170 students in grade 7; and	
The media specialist wants to know which books are the most popular among the	
students in her school. Since she cannot ask all the students, she will survey a group of	
them.	
Which sample can best help the media specialist draw conclusions about the	
preferences of all the students in the school?	
A. 45 sixth graders, 35 seventh graders, 20 eighth graders	
B. 20 sixth graders, 35 seventh graders, 45 eighth graders	
C. 45 sixth graders, 45 seventh graders, 45 eighth graders	
D. 20 sixth graders, 20 seventh graders, 20 eighth graders	

See Appendix A for the Practice Test items aligned to a standard in this grouping.

Grade 7 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.7.SP Statistics \& Probability MAFS.7.SP. 2 Draw informal comparative inferences about two MAFS.7.SP.2.4 Use measures of center and measures of varia from random samples to draw informal comparative inferenc populations. For example, decide whether the words in a chap science book are generally longer than the words in a chapter science book. Also Assesses: MAFS.7.SP.2.3 Informally assess the degree of visual overlap distributions with similar variability, measuring the difference expressing it as a multiple of a measure of variability. For exam players on the basketball team is 10 cm greater than the mean the soccer team, about twice the variability (mean absolute devi on a dot plot, the separation between the two distributions of	ations. or numerical data ut two seventh-grade urth-grade numerical data en the centers by he mean height of t of players on) on either team; is noticeable.
Assessment Limit	N/A	
Calculator	Neutral	
Context	Required	
Sample Item		Item Type
Box plots for chapter 6 test scores of two classes are shown. Class \#1 The difference in the medians between Class \#1 and Class \#2 is approximately how many IQRs?		Equation Editor
See Appendix A for	Practice Test items aligned to a standard in this grouping.	

Content Standard	MAFS.7.SP Statistics \& Probability MAFS.7.SP. 3 Investigate chance processes and develop, use, and evaluate probability models. MAFS.7.SP.3.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $\frac{1}{2}$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	
Assessment Limit	N/A	
Calculator	Neutral	
Context	Required	
Sample Item		Item Type
The local weather report stated there is a $\frac{2}{3}$ chance of rain on Friday. How likely is it to rain? A. certain B. likely C. unlikely D. impossible		Multiple Choice
The weather report stated there is a $\frac{2}{3}$ chance of rain on Friday, but it is more likely to rain on Saturday than on Friday. What is a possible probability of rain on Saturday?		Equation Editor
See Appendix A for the Practice Test item aligned to this standard.		

Grade 7 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.7.SP Statistics \& Probability MAFS.7.SP. 3 Investigate chance processes and develop, use, and evaluate probability models. MAFS.7.SP.3.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. MAFS.7.SP.3.7a Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. MAFS.7.SP.3.7b Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies? Also Assesses: MAFS.7.SP.3.8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. MAFS.7.SP.3.8a Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. MAFS.7.SP.3.8b Represent sample spaces for compound events using methods such as organized lists, tables, and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event. MAFS.7.SP.3.8c Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?
Assessment Limit	N/A
Calculator	Neutral
Context	Required
Sample Item	
A bag contains 3 What is the proba	marbles and 6 blue marbles. Equation Editor ty of randomly selecting a red marble from the bag?

Sample Item	Item Type
Tony has a bucket filled with 10 green, 3 blue, 1 red, and 7 yellow tennis balls. He removes 4 tennis balls from the bucket, without replacement. Which of the following outcomes could represent this selection? - All of the tennis balls are blue. \square There is 1 tennis ball of each color. - There are exactly 3 green tennis balls. $\square \quad$ There are more red tennis balls removed than other colors. $\square \quad$ The number of red tennis balls is the same as the number of blue tennis balls.	Multiselect
Select all situations that describe a probability of $\frac{1}{6}$ of drawing a red marble out of the bag. 1 red, 6 yellow, 6 green, 6 blue, 6 white 3 red, 4 yellow, 4 green, 4 blue, 3 white - 4 red, 5 yellow, 5 green, 4 blue, 6 white - 6 red, 6 yellow, 6 green, 6 blue, 6 white - 6 red, 4 yellow, 8 green, 6 blue, 12 white	Multiselect
A bucket contains 5 green tennis balls and 2 yellow tennis balls. Tony removes 2 tennis balls, with replacement, from the bucket shown. What is the probability that Tony will choose a yellow tennis ball and then a green tennis ball?	Equation Editor
A bucket contains 5 green tennis balls, 2 yellow tennis balls, and 6 red tennis balls. Tony removes 3 tennis balls, with replacement, from the bucket shown. What is the probability that the first tennis ball is yellow, the second tennis ball is green, and the third tennis ball is red?	Equation Editor

| Sample Item | Item Type |
| :--- | :--- | :--- |
| A bucket contains 5 green tennis balls, 2 yellow tennis balls, 6 red tennis balls, and 8 | Equation Editor |
| blue tennis balls. Tony removes 4 tennis balls, without replacement, from the bucket | |
| shown. | |
| What is the probability that Tony removes 1 yellow, 1 green, and 2 blue tennis balls? | |
| See Appendix A for the Practice Test items aligned to these standards. | |

Grade 7 Mathematics Item Specifications
Florida Standards Assessments

Appendix A

The chart below contains information about the standard alignment for the items in the Grade 7 Mathematics FSA Computer-Based Practice Test at http://fsassessments.org/students-and-families/practice-tests/

Content Standard	Item Type	Computer-Based Practice Test Item Number
MAFS.7.RP.1.1	Equation Editor	17
MAFS.7.RP.1.2a	Editing Task Choice	15
MAFS.7.RP.1.2a	Multiselect	19
MAFS.7.RP.1.3	Equation Editor	12
MAFS.7.NS.1.1	GRID	9
MAFS.7.NS.1.2d	Multiple Choice	6
MAFS.7.NS.1.3	Table Item	5
MAFS.7.EE.1.1	Equation Editor	20
MAFS.7.EE.1.2	Matching Item	2
MAFS.7.EE.2.3	Equation Editor	13
MAFS.7.EE.2.4	Equation Editor	23
MAFS.7.EE.2.4b	Equation Editor, GRID, and Multiselect	26
MAFS.7.G.1.1	GRID	24
MAFS.7.G.1.2	GRID	4
MAFS.7.G.1.3	Open Response	14
MAFS.7.G.2.4	Equation Editor	16
MAFS.7.G.2.5	Equation Editor	22
MAFS.7.G.2.5	Equation Editor	27
MAFS.7.G.2.6	GRID	18
MAFS.7.SP.1.1	Multiple Choice	11
MAFS.7.SP.1.2	Equation Editor	25
MAFS.7.SP.2.3	GRID	7
MAFS.7.SP.2.4	Selectable Hot Text	10
MAFS.7.SP.3.5	Multiple Choice	1
MAFS.7.SP.3.6	Equation Editor	3
MAFS.7.SP.3.7	Multiple Choice	21
MAFS.7.SP.3.8	Multiselect	8

Appendix B: Revisions

Page(s)	Revision	Date
3	Description of multi-interaction items for paper-based assessments revised.	January 2020
11	Sample item revised.	January 2020
14	Sample items deleted.	January 2020
18	Sample item revised.	January 2020
22	Sample item revised.	January 2020
30	Sample item revised.	January 2020
34	Sample item revised.	January 2020

Grade 7 FSA Mathematics Reference Sheet

Customary Conversions

1 foot = 12 inches
1 yard = 3 feet
1 mile $=5,280$ feet
1 mile $=1,760$ yards
1 cup $=8$ fluid ounces
1 pint $=2$ cups
1 quart = 2 pints
1 gallon $=4$ quarts
1 pound = 16 ounces
1 ton = 2,000 pounds
Metric Conversions
1 meter = 100 centimeters
1 meter $=1000$ millimeters
1 kilometer $=1000$ meters
1 liter = 1000 milliliters
1 gram = 1000 milligrams
1 kilogram = 1000 grams
Time Conversions
1 minute $=60$ seconds
1 hour $=60$ minutes
1 day $=24$ hours
1 year = 365 days
1 year = 52 weeks

Formulas

$A=b h$
$A=I w$
$A=\frac{1}{2} b h$
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$V=B h$
$V=\frac{1}{3} B h$
$S A=P h+2 B$
$S A=\frac{1}{2} P \ell+B$

